
Demo: Altibase DSM: CTable for Pull-based Processing in
SPE∗

Jaemyung Kim, Vladimir Verjovkin, Sergey A. Fedorov,
Younghun Kim, Dae-Il Kim, Sungjin Kim

Altibase Corporation
182-13, Guro-dong, Guro-Gu

Seoul, 152-790, Korea
{ jmkim,verjovkin,fedorov,

yhkim,newdaily,sjkim }@altibase.com

Sang-Won Lee
School of Information & Communications Engr.

Sungkyunkwan University
Suwon, 440-746, Korea

swlee@skku.edu

ABSTRACT
We demonstrate streaming applications of the Altibase Data Stream
Middleware (DSM), the distributed Stream Processing Engine us-
ing the Publish/Subscribe Communication Model. Altibase DSM
has the Cached Table that is a key-value store supporting not only
insert but also update and delete operations. The demos include the
Sex-offender Tracking and Bus Arrival Information Systems.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures

General Terms
Design,Performance,Algorithm

1. INTRODUCTION
Recent advances in wireless technologies and mobile devices

such as smartphones and tablet computers, and new applications
including location-based and social network services generate a
significant amount of data. These services involve online analytic
processing, which requires a Stream Processing Engine (SPE) due
to its performance benefits. Streaming applications are naturally
distributed, and with increasing loads, the demand for distributed
architecture [3, 5] has emerged. Advanced network infrastructures
such as Gigabit Ethernet and InfiniBand (RDMA) also play a vital
role in heavily loaded distributed systems.

While traditional DBMS uses pull-based processing, SPE uses
push-based processing. Although SPE benefits from its push-based
model, it often refers to static relational data from DBMS for mean-
ingful analytic processing. Fetching data from DBMS can degrade
the entire performance due to its frequent occurrence. Conversely,
output stream events also need to be converted to relational tables or
accessed through legacy applications designed for pull-based pro-
cessing. Therefore, it entails additional implementation cost to con-
nect two systems with different processing paradigm.

We implement the Altibase Data Stream Middleware (DSM),
a distributed SPE with Publish/Subscribe Communication Model,

∗This work was supported in part by MKE, Korea under
ITRC (NIPA-2011-(C1090-1121-0008)) and also supported in
part by Seoul Metropolitan Government ‘Seoul R&BD Program
(PA090903)’

Copyright is held by the author/owner(s).
DEBS’11, July 11–15, 2011, New York, New York, USA.
ACM 978-1-4503-0423-8/11/07.

because each distributed Event Processing Agent (EPA) can be loosely
coupled. Altibase DSM includes the Cached Table (CTable) fea-
ture, a key-value store supporting not only insert but also update
and delete operations. It can be solely used as a relational table and
convert an event stream object into a CTable with a mapping func-
tion. For example, to minimize the latency in accessing a database
table, CTable is able to replicate a table from the Altibase Hy-
brid Database (HDB). When DSM starts up, it transmits all HDB
source table records. During operation, the HDB transaction log
of DML can be captured and converted into DML operations of
DSM. On the DSM side, to perform event processing, which refers
to the DBMS table, the CTable replicated with a HDB’s table can
be joined with standard event streams and windows.

CTable can be regarded as a transition technology which re-
duces the introduction costs of SPEs to legacy systems. Unbounded
streaming events are bound in the CTable with a unique up-to-date
key constraint. DSM supports SQL-like languages with a DBC-
style interface such as ODBC and JDBC. Furthermore, to facili-
tate integration with the legacy system, DSM additionally supports
pull-based query in an open-fetch-close manner when the query
includes only CTable(s) on the FROM clause. We explain the dis-
tributed architecture of the DSM and the Cached Table in Section 2
and demonstrate machine to machine (M2M) applications such as
sex-offender tracking and bus arrival information in Section 3.

2. ALTIBASE DSM AND CTABLE
In this section, we describe the distributed architecture of Al-

tibase DSM using the Publish/Subscribe communication model and
Cached Table. This paper mainly describes the CTable and its ap-
plications, and briefly explains our distributed architecture.

The event-processing tasks of SPE can be represented as an Event
Processing Network (EPN). EPN is an event flow, which is a col-
lection of staged executions of Event Processing Agents (EPAs).
Because Altibase DSM is designed to be distributed, it can have an
EPN that spans multiple nodes (Figure 1).

While Borealis [1] tightly manages distributed nodes and uses
the Medusa distribution logic, and TCP connections between EPAs
and TCP multiplexing for optimization, we use the Publish/Subscribe
Communication Model (Pub/Sub Model) for loosely coupled EPN
programming, UDP, and multicast technology for scalability. EPAs
are participants of the Pub/Sub Model that directs the flow of mes-
sages from senders to receivers based on receivers’ data interests
(Topic) [4]. To query distributed events, the event stream of the Al-
tibase DSM is mapped on the Topic of the Pub/Sub Model. Using
this mapping, physically separated stream queries (EPAs) can send
and receive the events without socket programming.

EPA

participate

Topic1
Topic2

Topic3

Event
Source

Event
Sink

EPA

Node2

EPA

Node3

EPA

Node1

Cached
Table

Cached
Table

Cached
Table

Pub/Sub-based
Propagation

Pull-based Query
Processing

Figure 1: Publish/Subscribe-based Distribution

SPE converts streaming events into a window, which is a tempo-
ral relational table to perform online aggregation. The events from
the window are then reconverted into streaming events. Bidirec-
tional conversion between stream and relation is inevitably used
for aggregation in SPE. Likewise, we believe that the manageabil-
ity of relational tables in SPEs and transition between push-based
to pull-based processing are required in use-cases mentioned.

As mentioned in [2], stream queries may join event streams and
relational tables. Because tables are mostly stored in DBMS, many
SPEs implement various input adapters like feeding data from DBMS
and fetching tuples from DBMS using DBC interfaces. However,
for this reason, the Altibase DSM support the relational table fea-
ture that can be updated from the DBMS tables. While a win-
dow for online aggregation is designed for append-only streaming
events, the CTable can perform update and delete operations.

In addition, we found that legacy systems hardly change from
pull-based to push-based processing architecture. Despite the ben-
efits of SPE, customers and application developers complain about
the difficulty in combining stream applications with legacy appli-
cations and prefer to use pull-based processing while minimizing
the changes in legacy systems. To reduce this introduction cost, the
CTable maintains the most recent record for each key to cache un-
bound streaming events, and, internally, it exploits the index struc-
ture, which is optimized for frequent update operations. CTable’s
recent values suit applications such as monitoring a dynamic dash-
board containing stock market symbols [6]. For event-processing,
DSM executes a set of queries before the events occur. Subse-
quently, when an event meets the query condition, DSM notifies a
user (push-based processing). However, the queries containing only
CTable(s) on the FROM clause are classified as ’CTable query’ and
are executed in pull-based processing (open-fetch-close method)
through ODBC and JDBC interfaces.

3. DEMONSTRATION
We apply Altibase DSM to track sex offenders and as a bus ar-

rival time information system.
Sex Offender Tracking System: Figure 2 is one of the machine-

to-machine (M2M) communication service usages. Paroled sex of-
fenders are obligated to stay in the district designated by law. For
monitoring purposes, such individuals are obligated to wear an elec-
tronic anklet embedded with GPS and/or RFID for location track-
ing and a CDMA module for communication. Each offender has a

different designated district, jurisdiction, and related organizations
(e.g., Police Agency, Public Prosecutors’ Office). This information
is scattered across different databases and is joined using the loca-
tion data of the offender. Altibase DSM joins the location tracking
events and CTables from the remote databases.

Notification
Database

Offenders'
Resident

Limitation
Database

Public
Prosecutors'

Office

Ministry of
Public Admin.
and Security

Police Agency

EPA(s)

Cached
Tables

Selective Notification

Location
Information
of Offenders JOIN

DSM

Figure 2: A Use Case for CTable

Bus Arrival Information System: In Seoul, South Korea, bus
arrival information at each station and the current location of the
buses for each route are provided online. Passengers are able to es-
timate the waiting time for a particular bus at the station. Possible
implementations include 1) electric display at a bus station, 2) bus
routes, and arrival information on a website, and 3) smartphone ap-
plications. The three abovementioned systems provide information
to users in the pull-based processing mode, even though bus loca-
tion events are processed in the push-based mode. To this end, the
Altibase DSM and its CTable are applied.

4. ACKNOWLEDGMENTS
We would like to thank Dmitry Klimkin, Maxim Tomilov, and

all other members of Altibase DSM Team for their efforts with de-
velopment of this product. We are also grateful to Sungmin Kim,
Sungil Bae, and Jae-Keoung Lim of Altibase for continuous sup-
porting to our direction.

5. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J. Hwang, W. Lindner, A. S. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of
the borealis stream processing engine. In CIDR, 2005.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In In roceedings of
the 21st ACM PODS, pages 1–16, 2002.

[3] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. B. Zdonik. Scalable distributed
stream processing. In CIDR, 2003.

[4] Y. Diao and M. J. Franklin. Publish/subscribe over streams. In
Encyclopedia of Database Systems, pages 2211–2216. 2009.

[5] J. M. Hellerstein and M. Stonebraker. Readings in Database
Systems: 4th Edition, chapter 10. The MIT Press, 2005.

[6] A. Moga, I. Botan, and N. Tatbul. Upstream: Storage-centric
load management for data streams with update semantics.
Technical report, ETH Zurich, CS Dept., 2009.

